
Height regulation of a quadrotor helicopter

Paolo Forni, Fabio Garofalo, Federico Patota, Flavio Tonelli, Luca Veroli
Università degli Studi di Roma “La Sapienza“

(Dated: May 22, 2012)

Abstract - Quadrotor helicopters represent a

thrilling and significant field of research for control

engineers and this is why we focused on such of aerial

vehicles. This paper describes the development of

a height control system which involved the identifica-

tion of the dynamic model, the design and implemen-

tation of the controller. We managed to work out the

several control-related issues we dealt with and this

led us to some stimulating conclusions.

1. INTRODUCTION

Quadrotors and in general unmanned aerial vehicles
(UAVs) are gaining increasing interest because of a wide
area of applications. They are commonly employed for
military purposes, academic research and commercial ap-
plications.

The aim of the current work is the design and imple-
mentation of a height regulation system on a quadrotor
helicopter based on standard control techniques and the
use of the Arduino prototyping platform and of a sim-
ple sonar. For technical and economical reasons we ad-
dressed this topic just focusing on the height regulation
assuming that a complete attitude control was already
provided. This resulted as the most feasible and less ex-
pensive way to get through this work.

The choice of a small-scale model capable of meeting
the challenges this kind of job would present turned out
to be essential. GAUI 330X small-scale model device re-
sulted as the best choice fitting with our needs: actually,
it provides high stability thanks to the GU-344 three-axis
gyro stabilizing system.

We assembled the main quadrotor body frame and
then we passed through the following steps:

• we wired and installed Electronic Speed Controllers
(ESCs), motors, the control unit and the receiver;

• we set the radio control and the control unit;

• we tuned the ESCs to make sure each motor is run
with the same output signal;

• we set the ESCs to select brake mode, start mode
and other similar parameters;

• we calibrated the neutral point before the first flight
(the so-called trig part).

In order to obtain significant measurements and to in-
terface the control unit with our own controller, we re-
alized an electronic scheme endowed with the Arduino

FIG. 1: CAD image of the GAUI 330X small-scale model

Nano v3.0 prototyping platform, the Devantech SRF05
ultra-sonic ranger and a potentiometer. At the end of
the work we realized the final electronic scheme (see ap-
pendix A) from which we removed the potentiometer.
Each step of this work required an intensive debugging

phase especially regarding the coding part of the Arduino
board. The final sketch is reported in the appendix B.

2. DYNAMIC MODEL

2.1. The linearized dynamic model

The general dynamic model of a quadrotor is well
known in the literature and will not be discussed here
in all details. An extensive model refers to each angular
velocity ωmi given to motor i (and so to the propellers)
as input to a MIMO nonlinear system with 12 state vari-
ables, defined as follows:

u =

ωm1

ωm2

ωm3

ωm4

 x =

x0
y0
h
ϕ
θ
ψ
vx
vy
vz
ωx

ωy

ωz

where

(
x0 y0 h

)T
is the position vector, ϕ, θ, ψ are

the roll-pitch-yaw variables,
(
vx vy vz

)T
is the velocity

vector and
(
ωx ωy ωz

)T
is the angular velocity vector.

2

This model takes into account air damping forces, grav-
ity, each motor thrust and non-modelled disturbances.

Fortunately, the GU-344 three-axis gyro system al-
ready provided an attitude control and for this reason
we focused on the height regulation. The control unit
hides the four angular velocity commands u but it gives
us four new commands which are the well known flight
dynamics parameters: throttle, aileron, elevator and rud-
der.

Starting from this configuration we built up an ad
hoc model from scratch. We reduced the problem to
the neighborhood of an equilibrium point where we as-
sumed the quadrotor fully stabilized in attitude, i.e.(
ϕ̄ θ̄ ψ̄ v̄x v̄y v̄z ω̄x ω̄y ω̄z

)T
= 0. Note that in such

configuration the ranger would give us the correct height
measurement even if the quadrotor was slightly tilted and
this is due to the fact that the sonar beam has a wide
cone angle.

Within this we decided to control the height ignoring
the aileron, elevator and rudder commands. Actually,
the throttle command τ is associated with the overall
average force Fp given by propellers to the rigid body
directly causing the raise or the descent. Thus, the model
was reduced to a SISO system consisting of the throttle
command τ as input and the height h as the only output.

We are now going to explain the relation between Fp

and τ . The throttle command is a Pulse-Position Mod-
ulation (PPM) signal to the control unit and we define
τ as the time length (expressed in microseconds) of high
state of the square wave. The GAUI instruction man-
ual reports that the throttle command is supposed to be
proportional to the overall angular velocity ω of the pro-
pellers and this is due to the internal ESC control loop:
ω = k′τ where k′ is a generic positive proportionality con-
stant. Moreover, the relation between the overall thrust
force Fp of the propellers and ω is given by aerodynamics:
Fp = bp ω

2 where bp is a coefficient that depends on the
propeller material and shape. Albeit we cannot deter-
mine the exact expression of the relationship between Fp

and τ we can assume Fp (τ) a monotonically increasing
function of τ . Linearizing, we obtain:

∆Fp (τ) = k∆τ

with k a generic positive proportionality constant.
The simplifications adopted so far lead to the formu-

lation of our own model. Given Newton’s first law:

mẍ =
∑
i

Fi

in one dimension we have:

mḧ = Fp (τ)−mg − bvḣ

where bvḣ is the air damping force on the vertical axis
and bv is the damping coefficient which has been experi-
mentally determined.

Setting γv = bv
m and Ap (τ) =

Fp(τ)
m we have the non-

linear system:

ḧ+ γvḣ = Ap (τ)− g (1)

In the neighborhood of an equilibrium point
(
τ̄ , h̄

)
where the thrust balances the gravity, i.e. Ap (τ̄) = g,
we can consider the gravity a constant disturbance. This
leads to the corresponding linearized system with the fol-
lowing transfer function:

W (s) =
∆h (s)

∆ω (s)
=

k

s (s+ γv)
(2)

2.2. Parameters definition and validation

The lack of knowledge about the exact nonlinear rela-
tion Ap (τ) in (1) forced us to base our analysis on the
linearized model (2). Thus, we decided to take some mea-
surement sessions to identify the process, assign values to
all mathematical constant in (2) and find the exact re-
lation between the input and the output. Our model is
based on the unit-step response.

FIG. 2: Measurement session with the USB cable

For this purpose, we soldered an electric connection
scheme (see appendix A) on a protoboard and coded an
Arduino sketch (see appendix B) to record the following
data: the throttle command τ to the control unit and the
height h from the sonar.

• As a first attempt, we made Arduino send raw data
through a USB cable as depicted in figure 2. Un-
fortunately, the cable destabilized the quadrotor in
such a way that no interesting measures were ob-
tained. Writing data on the internal Arduino EEP-
ROM resulted to be the best choice despite the
small amount of memory.

• As a second attempt, manually commanding the
throttle thanks to an external potentiometer, we
successfully recorded useful measures. We made
the quadrotor take off and, once reached a good
equilibrium point, we provided an unit-step to the

3

throttle command. Then we turned off the quadro-
tor and downloaded raw data from the EEPROM
thanks to an extremely simple Python script (see
appendix C).

The real measured output provided by the sonar was
then compared with the simulated output given by the
Simulink model reported in D. We toggled the parame-
ters k and γv in (2) to get the results showed in figures 3
and 4 and reported in table I. We finally chose the mean

value k = 2 [10
4m
s3] and γv = 0.2 [s−1] as the best fitting

parameters.

Take n. k[10
4m
s3

] γv[s
−1]

01 2.4322 0.2

02 1.6126 0.2

TABLE I: Best fitting parameters

4 6 8 10 12 14

0

50

100

150

Comparing measured and simulated output [take n.01]

time [s]

Measured sonar [cm]
Throttle command τ − 1400 in [µs]
Simulated sonar [cm]

FIG. 3: Identification of parameters about the first data-set

3. CONTROLLER DESIGN

3.1. PI and PID controllers

Our goal was to design a height regulation for the
quadrotor. The required specifications follow:

• asymptotic stability about a specified equilib-
rium point;

• zero steady-state error for unit step input.

Since the transfer function W (s) of the process itself
cointains a pole in s = 0, both the given specifications are
satisfied by a control law based on a simple proportional
action:

τ (t) = KP e (t) (3)

6 8 10 12 14 16 18 20 22 24

20

40

60

80

100

120

140

160

180

200

220

Comparing measured and simulated output [take n.02]

time [s]

Measured sonar [cm]
Throttle command τ − 1400 in [µs]
Simulated sonar [cm]

FIG. 4: Identification of parameters about the second data-
set

where KP is the proportional action constant and e (t) =
hd (t)− h (t) is the difference between the desired height
(setpoint) and the real height of the quadrotor. The lin-
earized system given by 2 doesn’t consider nonlinearities
and inaccuracy of the mathematical model. Firstly, our
controller doesn’t act directly upon the ESCs but it is
interfacing the control unit. Secondly, we have to take
into account quantization error in τ and in the measured
h. Thus, we added an integral action to the control law
in order to deal with all these non-modelled dynamics,
as follows:

τ (t) = KP e (t) +KI

∫ t

0

e (x) dx (4)

where KI is the integral action constant. As it will be
shown in subsection 3.2, such a control law produces a
large number of oscillations and a large overshoot. Thus
we added a derivative action to improve the combined
controller-process stability and this is why we focused on
standard PID controllers. The derivative action is highly
sensitive to noise that comes from the sonar and for this
reason we filtered the ideal derivative by a first-order sys-
tem. The final form of the PID algorithm follows:

PID (s) = KP +
KI

s
+

sKD

1 + KD

KPN s
(5)

where KD is the derivative action constant and N is a
value set to achieve low-pass filtering.
We are now going to justify the use of a digital PID

controller. Firstly, the output signal τ and the measured
signal h are both digital. Secondly, the sonar frequency
(20[Hz]) set the whole control loop at the same frequency
and it is far higher than the quadrotor’s one. In fact
we have W (j (20 [Hz])) = −77.95 [dB] from the Bode
magnitude plot. We can see the quadrotor as a very slow
system that acts as a filter upon the throttle command.

4

Moreover, we compute the derivate basing on the last
three samples, instead of the last two, to avoid the am-
plification of noise signal in the measured height. The
algorithm coded into the Arduino is the following:

Pt = KP et

It = It−1 +KI Ts et

Dt =
KD

KD+KPNTs

(
Dt−1 −KPN

ht−ht−2

2

)
where Ts = 0.05 [ms] is the sample time and ht is the
measured height at time t.

3.2. Simulations

The Simulink model reported in appendix D let us ver-
ify the correctness of our algorithm and check the dura-
tion of the unit step response. The tuning of the PID
parameters was done by the Matlab auto-tuning tool.
Table II shows values of parameters used in the simula-
tions. Results are showed in figure 5 and 6.

KP KI KD N

PI 0.29232 0.01662 0

PID 0.29672 0.01570 0.10581 3.59690

TABLE II: Best fitting parameters

0 20 40 60 80 100 120
80

100

120

140

160

180

200

220

time [s]

he
ig

ht
 [c

m
]

Simulated unit−step response with PI

height
desired height

FIG. 5: Simulated unit-step response with PI

4. IMPLEMENTATION RESULTS

A really challenging part of this job was represented by
the implementation of the control system in the quadro-
tor. We chose to make the quadrotor take off in manual
mode and then to switch on our control system in order

0 20 40 60 80 100 120
80

100

120

140

160

180

200

time [s]

he
ig

ht
 [c

m
]

Simulated unit−step response with PID

height
desired height

FIG. 6: Simulated unit-step response with PID

to start the auto-throttle pilot in the neighborhood of an
equilibrium point.

Several problems occurred during the coding part of
this throttle switch and this was due to the fact that high-
level Arduino libraries don’t handle timing problems in
smart way. For instance, it wasn’t possible to record raw
data on the internal EEPROM while the control loop was
running. Moreover, comparing the throttle square wave
in manual and automatic mode thanks to an oscilloscope,
we found a mismatch (43 [µs]) in the time length of high
state of the square wave.

About running standard PI controller, we observed
a correct behaviour in the height regulation with small
aerodynamic disturbances (about 30 [cm] of absolute er-
ror). Then we provided a large unit-step input (1 [m])
thanks to a wooden board. Too many oscillations (at
least 6) occur when a large unit-step is provided. This
is mainly due to the two integrators contained in the
open-loop transfer function and to the amplification due
to nonlinear effects. High KP gain determine too large
overshoots whereas low KP gain make the overall sys-
tem too slow and incapable of react properly within the
environment constraints (floor, ceiling and the wooden
board).

About running standard PID controller, we observed
better performances in the height regulation with small
aerodynamic disturbances (about 15 [cm] of absolute er-
ror). Unfortunately, the system turns out to be extremely
susceptible to too large unit-step input. This is mainly
due to the fact that KD si too high and we didn’t simu-
late properly the first-order filter on derivative.

Finally, please note that we ignore the exact mapping
between throttle and the overall force given to propellers
by the GU-344 control unit. Actually, this control unit
might add its own dynamics to the input throttle com-
mand and cause undesired behaviours.

5

5. CONCLUSIONS

This work was extremely interesting because let us:

• see how mathematical control laws effectively act
upon the physical world;

• compare the simulation routine and the real imple-
mentation routine within a control-related context;

• deal with several technical issues.

Note that achieved performances are good but they
can be largely improved by further works consisting in:

• increasing KP gain to make the system more reac-
tive;

• decreasing KI gain to reduce the overshoots in os-
cillations;

• decreasing KD gain to improve stability;

• using second-order filter on derivative to avoid noise
amplification.

Appendix A: Electric schemes

ARDUINO
Nano v3.0

GND 5V A1 13

2 5 6 11

Devantech
SRF05

5V GND ECHOTRIG

Potentiometer

THR

AIL
RUD
ELE

GEAR
AUX

RX GU-344
Gyro System

THR

AIL
RUD
ELE
GAIN

FIG. 7: Electrical scheme

Appendix B: Sketch Arduino

• FLYDUINO unit-step eeprom.ino

// Second measurement s e s s i on :
// − the potent iometer commands the t h r o t t l e ;
// − t h r o t t l e+sonar are recorded on the EEPROM.
//
// by Paolo Forni , F lav io Tone l l i

// Feb 29 , 2012

#include <Servo . h>
#include <EEPROM. h>

// D i g i t a l p ins
#define TRIG 13
#define ECHO 2
int t h r o t t l eP i n = 11 ;
int potent iometerPin = 1 ;

// Servo o b j e c t s
Servo t h r o t t l e ; //Orange

// INTERRUPT pins
#define INTERRUPT 0

// acqu s i t i on time i n t e r v a l s :
// Sonar Bw = 20 Hz
unsigned long sonarTimeInterva l = 50000 ;
unsigned long t r i gT ime In t e rva l = 13 ;

// a l l time v a r i a b l e s are in microseconds
unsigned long startEchoTime=0;
unsigned long startSonarTime = 0 ;
unsigned long startTrigTime = 0 ;
unsigned long echoLength = 0 ;
unsigned long currentTime = 0 ;
unsigned long beginningTime = 0 ;

// s t a t e o f hand lers
int i n t e r r up tS t a t e = 0 ;
int o l d In t e r rup tS t a t e =0;
int t r i g = 0 ;
int o ldTr ig = 0 ;
int gradino = 25 ; // microseconds

// enab le TRIG pin to be ra i s ed or lowered
int t r i gEnab l e = 1 ;
int f i rstChangingEdgeEvent = 0 ;

// eeprom va lue s
int address = 0 ;
byte usValue = 0 ;
byte cmValue = 0 ;
boolean testEeprom = true ;
boolean writeEepromFlag = f a l s e ;
int recordThresho ld = 1430 ;
int waitBeforeWrit ing = 0 ;
int waitIntervalEeprom = 20 ; // [sec]
int microseconds = 0 ;

// i n t e r r up t handler
void changeEdge () {

i f (f i rstChangingEdgeEvent==0)
// needed by the f i r s t
// cyc le , o therwi se i t messes up eve ry th ing

f i rstChangingEdgeEvent=1;
else

i n t e r r up tS t a t e = 1− i n t e r r up tS t a t e ;
}

void se tMicroseconds (Servo &s , int uS) {
i f (s . readMicroseconds () != uS) {

s . wr i teMicroseconds (uS) ;
}

}

void setup () {

6

// S e r i a l . beg in (9600) ;
// pin i n i t i a l i z a t i o n
pinMode (TRIG,OUTPUT) ;
t h r o t t l e . attach (t h r o t t l eP i n) ;

// a t tach i n t e r r up t
a t ta ch In t e r rup t (INTERRUPT, changeEdge ,CHANGE) ;

// s e t some v a r i a b l e s
startSonarTime = micros () ;

}

void loop () {
// take s currentTime in microseconds
currentTime = micros () ;

// sonar a c q u i s i t i o n every sonarTimeInterva l
i f (t r i gEnab l e==1&&

currentTime−startSonarTime>=
sonarTimeInterva l) {

t r i g = 1 ;
t r i gEnab l e = 0 ;

// zero ing time
startSonarTime = currentTime ;

}

// t r i g handler r a i s i n g and lower ing TRIG
i f (o ldTr ig != t r i g) {

o ldTr ig=t r i g ;
i f (t r i g==1) {

d i g i t a lWr i t e (TRIG,HIGH) ;
startTrigTime = currentTime ;

}
else {

d i g i t a lWr i t e (TRIG,LOW) ;
}

}

// i n t e r r up t handler sending echoLength
i f (o l d In t e r rup tS t a t e != in t e r r up tS t a t e) {

o l d In t e r rup tS t a t e=in t e r r up tS t a t e ;
i f (i n t e r r up tS t a t e==1) {
startEchoTime = micros () ;

}
else {
echoLength = (micros ()− startEchoTime)/58 ;
t r i gEnab l e = 1 ;
int f oo = analogRead (potent iometerPin) ;
microseconds = map(foo , 0 , 1023 , 1100 , 1900) ;
se tMicroseconds (t h r o t t l e , microseconds) ;

i f (writeEepromFlag) {
i f (waitBeforeWrit ing>

20∗waitIntervalEeprom) {
usValue = (microseconds −1100)/4;
cmValue = echoLength ;
EEPROM. wr i t e (address , usValue) ;
EEPROM. wr i t e (address+1,cmValue) ;
address=address +2;
i f (address >1023) {
writeEepromFlag=f a l s e ;

// Se r i a l . p r in t (”RECORD OFF”) ;
}

} else {
waitBeforeWrit ing++;

}
}

}
}

// l e t the TRIG pin high only during
// t r i gT imeIn t e r va l
i f (t r i g==1&¤tTime−startTrigTime>=

tr i gT ime In t e rva l) {
t r i g = 0 ;

}

i f (microseconds>recordThresho ld &&
testEeprom) {

testEeprom=f a l s e ;
writeEepromFlag=true ;

// S e r i a l . p r i n t l n (”RECORD ON”) ;
address =0;

}

}

• FLYDUINO complete PID.ino

// FLYDUINO
// − can swi tch between automatic and manual
// − reads the sonar
// − prov ides t h r o t t l e thanks to the PID
//
// by Paolo Forni , F lav io Tone l l i ,
// Apr 18 , 2012

#include <PinChangeInt . h>
// extends i n t e r r u p t s to a l l p ins
#include <TimerOne . h>
// s im p l i f i e s t iming on Timer1
#include <Servo . h> // s im p l i f i e s servo con t ro l

// D i g i t a l p ins and EXT INTERRUPTS (sonar) pin
#define TRIG 13
#define ECHO 2
#define THROTTLERX 5 // t h r o t t l e from RX
#define SWITCH RX 6 // swi tch from RX
#define THROTTLE 11 // t h r o t t l e to auto−p i l o t
#define INTERRUPT 0

// acqu s i t i on time i n t e r v a l s :
// Sonar Bw = 20 Hz
unsigned long sonarTimeInterva l = 50000 ;
unsigned long t r i gT ime In t e rva l = 13 ;

// v a r i a b l e s r e l a t e d to the swi tch func t ion
byte s t a t e =0;
// i d e n t i f i e s the s t a t e o f the square
//wave read on THROTTLERX and SWITCH RX
byte s ta teSwi tch=0;
// i d e n t i f i e s the s t a t e o f the square
//wave read on SWITCH RX during
// the sw i t chS t i c k−HIGH cyc l e
int f l a g = 0 ;
// i d e n t i f i e s which pin the square wave
//comes from : 0 − t h r o t t l e , 1 − swi t ch
boolean enableBypass = f a l s e ;
// s p e c i f i e s when arduino
//must come back to sw i t chS t i c k−LOW cyc l e
unsigned int time = 0 ;
// during the sw i t chS t i c k−LOW cyc le , s t o r e s the
// duty cy c l e o f the SWITCH RX, using TimerOne
unsigned int t imeSwitch = 0 ;
// during the sw i t chS t i c k−HIGH cyc le , s t o r e s
// the duty c y c l e o f the SWITCH RX,

7

// using micros ()
boolean sw i t chSt i ck = f a l s e ;
// i d e n t i f i e s the s t a t e o f the swi tch s t i c k on
//TX: LOW (1900 us) and HIGH (1100 us)

// a l l v a r i a b l e s are in microseconds
unsigned long startEchoTime=0;
unsigned long startSonarTime = 0 ;
unsigned long startTrigTime = 0 ;
unsigned long s tar tSwitchSquare = 0 ;
unsigned long echoLength = 0 ;
unsigned long currentTime = 0 ;

// s t a t e o f sonar i n t e r r up t hand lers
int i n t e r r up tS t a t e = 0 ;
int o l d In t e r rup tS t a t e =0;
int t r i g = 0 ;
int o ldTr ig = 0 ;

// enab le TRIG pin to be ra i s ed or lowered
int t r i gEnab l e = 1 ;
int f i rstChangingEdgeEvent = 0 ;

// PID−r e l a t e d v a r i a b l e s
boolean f i rstTimeReadingSonar = true ;
int i n i t i a lCond i t i onOnIn t e g r a t o r = 0 ;
double propo r t i ona l = 0 ;
double i n t e g r a t i v e = 0 ;
double d e r i v a t i v e = 0 ;
double d e r i v a t i v e 2 = 0 ;
double d e r i v a t i v e 3 = 0 ;
double P = 0 .29672 ;
double I = 0 . 01570 ;
double D = 0 .10581 ;
double N = 3 .59690 ;
double Ts = 0 . 0 5 ;
double r = 0 ; // s e t p o i n t
double y = 100 ; //measured output (sonar)
double e = 0 ; // error between r and y
double u = 0 ; // (t h r o t t l e)
int microseconds = 0 ;
int uSo f f s e t = 43 ;

// sonar i n t e r r up t handler
void changeEdge () {

i f (f i rstChangingEdgeEvent==0)
// needed by the f i r s t cyc le ,
// o therwi se i t mess up eve ry th ing
f i rstChangingEdgeEvent=1;

else
i n t e r r up tS t a t e = 1− i n t e r r up tS t a t e ;

}

Servo t h r o t t l e ;

void se tMicroseconds (Servo &s , int uS) {
i f (s . readMicroseconds () != uS) {

s . wr i teMicroseconds (uS) ;
}

}

void PID(int sonar) {
i f (sonar <500)

y = sonar ;

i f (f i r stTimeReadingSonar) {
// s e t t i n g i n i t i a l cond i t i ons on the PID
f i r stTimeReadingSonar = f a l s e ;
r = y ;
i n t e g r a t i v e = in i t i a lCond i t i onOnIn t e g r a t o r ;

d e r i v a t i v e = 0 ;
d e r i v a t i v e 2 = r ;
d e r i v a t i v e 3 = r ;

}
e = r−y ;

// P act ion
propo r t i ona l = P∗e ;

// I ac t ion
i n t e g r a t i v e = i n t e g r a t i v e + I ∗Ts∗e ;

// D act ion (second−order d e r i v a t i v e)
d e r i v a t i v e = D/(D+N∗Ts∗P)∗ d e r i v a t i v e −

D∗N∗P/(D+N∗P∗Ts)∗ (y−d e r i v a t i v e 2) ;
d e r i v a t i v e 2 = de r i v a t i v e 3 ;
d e r i v a t i v e 3 = y ;

// output command
u = propo r t i ona l+i n t e g r a t i v e+de r i v a t i v e ;
microseconds = (int) (u+0.5) ;

// app ly ing sa tu ra t i on
i f (microseconds >1900)

microseconds =1900;
i f (microseconds <1100)

microseconds =1100;
}

void setup () {
// pin i n i t i a l i z a t i o n
pinMode (THROTTLERX,INPUT) ;
pinMode (SWITCH RX,INPUT) ;
pinMode (THROTTLE,OUTPUT) ;
pinMode (TRIG,OUTPUT) ;
d i g i t a lWr i t e (THROTTLERX,HIGH) ;
d i g i t a lWr i t e (SWITCH RX,HIGH) ;

// square wave reading i n i t i a l i z a t i o n
Timer1 . i n i t i a l i z e (2 200) ;
Timer1 . r e s t a r t () ;
PCintPort : : a t t a ch In t e r rup t (THROTTLE RX,

r i s e , RISING) ;
// a t tach a PinChange In t e r rup t to the
// THROTTLERX pin

}

void loop () {
i f (! sw i t chSt i ck) {

//∗∗ rou t ine during the sw i t chS t i c k−LOW cyc l e

switch (s t a t e) {
//works with the square waves on
//THROTTLERX and SWITCH RX pins
case RISING : //we j u s t saw a r i s i n g edge
i f (f l a g==0) {
PCintPort : : de tach Inte r rupt (THROTTLERX) ;
PCintPort : : a t t a ch In t e r rup t (THROTTLE RX,

f a l l ,FALLING) ;
}
else {

PCintPort : : de tach Inte r rupt (SWITCH RX) ;
PCintPort : : a t t a ch In t e r rup t (SWITCH RX,

f a l l ,FALLING) ;
}
s t a t e =255;
break ;

case FALLING: //we j u s t saw a f a l l i n g edge
i f (f l a g==0) {

8

PCintPort : : de tach Inte r rupt (THROTTLERX) ;
i n i t i a lCond i t i onOn In t e g r a t o r = time ;
PCintPort : : a t t a ch In t e r rup t (SWITCH RX,

r i s e , RISING) ;
}
else {

PCintPort : : de tach Inte r rupt (SWITCH RX) ;
PCintPort : : a t t a ch In t e r rup t (THROTTLE RX,

r i s e , RISING) ;
/∗ d i s a b l e t h r o t t l e bypass when the ∗∗
∗∗ swi t ch s t i c k i s r i s e d ∗∗∗∗∗∗∗∗∗∗∗ ∗/
i f (time<1500) {

// read the swi tch s t i c k s t a t e
sw i t chSt i ck = true ;
// d i s a b l e the i n t e r r u p t s
PCintPort : : de tach Inte r rupt (

THROTTLERX) ;
PCintPort : : de tach Inte r rupt (

SWITCH RX) ;
a t t a ch In t e r rup t (INTERRUPT,

changeEdge ,CHANGE) ;
PCintPort : : a t t a ch In t e r rup t (

SWITCH RX, r i s eSwi t ch , RISING) ;
t h r o t t l e . attach (THROTTLE) ;
se tMicroseconds (t h r o t t l e ,

i n i t i a lCond i t i onOn In t e g r a t o r+
uSo f f s e t) ;

startSonarTime = micros () ;
// s e t some sonar−r e l a t e d v a r i a b l e s

}
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

}
f l a g = 1− f l a g ;
s t a t e =255;
break ;

}
}

else {

/∗∗∗ rou t ine during the sw i t chS t i c k−HIGH cyc l e
∗∗ ∗/

switch (s ta teSwi tch) {
//works with the square
//waves on SWITCH RX pin

case RISING :
//we j u s t saw a r i s i n g edge
PCintPort : : de tach Inte r rupt (SWITCH RX) ;
PCintPort : : a t t a ch In t e r rup t (SWITCH RX,

f a l l Sw i t ch ,FALLING) ;
s tar tSwitchSquare = micros () ;
s ta teSwi tch =255;
break ;

case FALLING: //we j u s t saw a f a l l i n g edge
PCintPort : : de tach Inte r rupt (SWITCH RX) ;
s ta teSwi tch =255;
time = micros ()− s tar tSwitchSquare ;
i f (time>1500)

enableBypass=true ;
else

PCintPort : : a t t a ch In t e r rup t (SWITCH RX,
r i s eSwi t ch , RISING) ;

break ;
}

/∗∗∗∗∗∗∗ enab le t h r o t t l e bypass when the
∗∗∗∗∗∗∗∗∗ swi t ch s t i c k i s lowered ∗∗∗∗∗∗∗∗/

i f (enableBypass) {
enableBypass = f a l s e ;
sw i t chSt i ck = f a l s e ;
f i r s tTimeReadingSonar = true ;
t h r o t t l e . detach () ; // detach the servo
Timer1 . i n i t i a l i z e (2 200) ; // r e s t a r t Timer1
Timer1 . r e s t a r t () ;
s t a t e =255;
PCintPort : : a t t a ch In t e r rup t (

THROTTLERX, r i s e , RISING) ;
// re−a t tach the i n t e r r u p t s

PCintPort : : de tach Inte r rupt (SWITCH RX) ;
de tach Inte r rupt (INTERRUPT) ;

}
else {

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ reading the sonar , ∗∗∗∗∗∗
/∗∗∗∗∗∗∗∗∗∗∗∗∗ ac t ing on the t h r o t t l e ∗/

// take s currentTime in microseconds
currentTime = micros () ;

// sonar every sonarTimeInterva l
i f (t r i gEnab l e==1 &&

currentTime−startSonarTime>=
sonarTimeInterva l) {

t r i g = 1 ;
t r i gEnab l e = 0 ;

// zero ing time
startSonarTime = currentTime ;

}

// t r i g handler r a i s i n g and lower ing TRIG
i f (o ldTr ig != t r i g) {

o ldTr ig=t r i g ;
i f (t r i g==1) {

d i g i t a lWr i t e (TRIG,HIGH) ;
startTrigTime = currentTime ;

}
else {

d i g i t a lWr i t e (TRIG,LOW) ;
}

}

// i n t e r r up t handler computing and
// sending echoLength
i f (o l d In t e r rup tS t a t e != in t e r r up tS t a t e) {

o l d In t e r rup tS t a t e=in t e r r up tS t a t e ;
i f (i n t e r r up tS t a t e==1) {

startEchoTime = micros () ;
}
else {

echoLength = (micros ()−
startEchoTime)/58 ;

t r i gEnab l e = 1 ;
PID(echoLength) ;
se tMicroseconds (t h r o t t l e ,

microseconds+uSo f f s e t) ;

}
}

// l e t the TRIG pin high only during
t r i gT ime In t e rva l

i f (t r i g==1&¤tTime−startTrigTime>=
tr i gT ime In t e rva l) {

t r i g = 0 ;
}

9

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗END∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

}
}

}

void r i s e ()
{

s t a t e=RISING ;
Timer1 . r e s t a r t () ;
Timer1 . s t a r t () ;
i f (f l a g==0&&!sw i t chSt i ck)

// wr i t e s the t h r o t t l e pin to the
//auto−p i l o t i f f the sw i t c hS t i c k i s low

d i g i t a lWr i t e (THROTTLE,HIGH) ;
//and we read t h r o t t l e square wave

}

void f a l l ()
{

s t a t e=FALLING;
time=Timer1 . read () ;
i f (f l a g==0&&!sw i t chSt i ck)

d i g i t a lWr i t e (THROTTLE,LOW) ;
}

void r i s eSw i t ch ()
{

s ta teSwi tch=RISING ;
}

void f a l l Sw i t c h ()
{

s ta teSwi tch=FALLING;
}

Appendix C: Python scripts

• flyduino aquisition.py

Acqu i s i t i on from the arduino ske t ch running
on the f l y du ino
#
by Paolo Forni , F lav io Tone l l i
Feb 20 , 2012

import sys
import s e r i a l
import time
import s t r i n g

def main () :
i f (l en (sys . argv)<4):

print ”Usage : python a c qu i s i t i o n . py
<s e r i a l I n t e r f a c e > <acquis i t ionTime>
<t h r o t t l e F i l e> <sonarF i l e>”

sys . e x i t (2) ;

t h r o t t l e F i l e = open (sys . argv [3] , ”w”)

s ona rF i l e = open (sys . argv [4] , ”w”)

acqu i s i t i onTime = in t (sys . argv [2])
arduino = s e r i a l . S e r i a l (sys . argv [1] , 9 6 0 0)
t imeStart = time . time ()
a c qu i s i t i o nS t a t e =0;

while (time . time ()− t imeStart<acqu i s i t i onTime) :
rawStr ing = arduino . r e ad l i n e ()
i f (rawStr ing [0:3]==”###”) :

i f (a c qu i s i t i o nS t a t e ==0):
a c qu i s i t i o nS t a t e=1

sona rF i l e . wr i t e (rawStr ing [3 :])
continue

i f (a c qu i s i t i o nS t a t e ==1):
t h r o t t l e F i l e . wr i t e (rawStr ing) ;

i f name == ” main ” :
main ()

Appendix D: Matlab R©& Simulink models

Linearized system

time

t

throttle
at

equilibrium

−C−

throttle

tau

sonar

h

one−pole
delay

on
velocity

k

den(s)
initial

value =
sonar at

equilibrium

1
s

Clock

FIG. 8: Simulink model of the process

Controlled system

time

treference

reference

height

h

Setpoint Saturation

Quantizer sonar

Quantizer
throttle

Proportional action

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Linearized system
QUADROTOR

throttle sonar

Integral action

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Derivative action

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Clock

FIG. 9: Simulink model of the controlled system

